Analysis of a Spectral-Galerkin Approximation to the Helmholtz Equation in Exterior Domains
نویسندگان
چکیده
An error analysis is presented for the spectral-Galerkin method to the Helmholtz equation in 2and 3-dimensional exterior domains. The problem in unbounded domains is first reduced to a problem on a bounded domain via the Dirichlet-to-Neumann operator, and then a spectral-Galerkin method is employed to approximate the reduced problem. The error analysis is based on exploring delicate asymptotic behaviors of the Hankel functions and on deriving a priori estimates with explicit dependence on the wave number for both the continuous and the discrete problems. Explicit error bounds with respect to the wave number are derived, and some illustrative numerical examples are also presented.
منابع مشابه
Spectral Approximation of the Helmholtz Equation with High Wave Numbers
A complete error analysis is performed for the spectral-Galerkin approximation of a model Helmholtz equation with high wave numbers. The analysis presented in this paper does not rely on the explicit knowledge of continuous/discrete Green’s functions and does not require any mesh condition to be satisfied. Furthermore, new error estimates are also established for multidimensional radial and sph...
متن کاملAn Efficient and Accurate Spectral Method for Acoustic Scattering in Elliptic Domains
An efficient and accurate method for solving the two-dimensional Helmholtz equation in domains exterior to elongated obstacles is developed in this paper. The method is based on the so called transformed field expansion (TFE) coupled with a spectral-Galerkin solver for elliptical domain using Mathieu functions. Numerical results are presented to show the accuracy and stability of the proposed m...
متن کاملThree dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کاملA Stable High-Order Method for Two-Dimensional Bounded-Obstacle Scattering
A stable and high-order method for solving the Helmholtz equation on a twodimensional domain exterior to a bounded obstacle is developed in this paper. The method is based on a boundary perturbation technique (“transformed field expansions”) coupled with a wellconditioned high-order spectral-Galerkin solver. The method is further enhanced with numerical analytic continuation, implemented via Pa...
متن کاملNumerische Mathematik Manuscript-nr. a Finite-element Capacitance Matrix Method for Exterior Helmholtz Problems
We introduce an algorithm for the eecient numerical solution of exterior boundary value problems for the Helmholtz equation. The problem is reformulated as an equivalent one on a bounded domain using an exact non-local boundary condition on a circular artiicial boundary. An FFT-based fast Helmholtz solver is then derived for a nite-element discretization on an annular domain. The exterior probl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 45 شماره
صفحات -
تاریخ انتشار 2007